Diffusion along chains of normally hyperbolic cylinders

INdAM Workshop – DinAmicl V
Modern Trends in the Ergodic Theory of Dynamical Systems
June 5-9, 2017

Marian Gidea
Jean-Pierre Marco

Yeshiva University - New York
Université Paris 6
Outline

Introduction

Objectives

Geometric structures

Main result

Sketch of the proof of the main result
Introduction

Arnold Diffusion Problem (1964):
Integrable Hamiltonian systems, of $n > 2$ degrees of freedom, and ‘typical’, subjected to ε-small, ‘generic’ perturbations have trajectories that travel $O(1)$

Informally: Small forcing can produce large effects

Note: Not necessarily a diffusion process
Arnold Diffusion Problem (1964):
Integrable Hamiltonian systems, of \(n > 2 \) degrees of freedom, and ‘typical’, subjected to \(\varepsilon \)-small, ‘generic’ perturbations have trajectories that travel \(O(1) \)

Informally: Small forcing can produce large effects

Note: Not necessarily a diffusion process
Introduction

- **Arnold Diffusion Problem (1964):**
 Integrable Hamiltonian systems, of \(n > 2 \) degrees of freedom, and ‘typical’, subjected to \(\varepsilon \)-small, ‘generic’ perturbations have trajectories that travel \(O(1) \)
- **Informally:** Small forcing can produce large effects
- **Note:** Not necessarily a diffusion process
Introduction

- **Arnold Diffusion Problem (1964):**
 Integrable Hamiltonian systems, of \(n > 2 \) degrees of freedom, and ‘typical’, subjected to \(\varepsilon \)-small, ‘generic’ perturbations have trajectories that travel \(O(1) \)

- **Informally:** Small forcing can produce large effects

- **Note:** Not necessarily a diffusion process
Introduction

- **Arnold Diffusion Problem (1964):**
 Integrable Hamiltonian systems, of $n > 2$ degrees of freedom, and ‘typical’, subjected to ε-small, ‘generic’ perturbations have trajectories that travel $O(1)$

- **Informally:** Small forcing can produce large effects

- **Note:** Not necessarily a diffusion process
Introduction

Example:

- Planar elliptic restricted three-body problem (PERTBP): the primaries move on elliptic orbits of eccentricities ε
- Model: Sun-Jupiter system $\mu = 0.0009537$, $\varepsilon = 0.048$, initial energy h of comet Oterma
- Hamiltonian $H_\varepsilon(x, t) = H_0(x) + \varepsilon H_1(x, t)$, H_0 is the Hamiltonian of the PCRTBP
- Theorem [Capiński, M.G., de la Llave, 2014]: There exist $\varepsilon_0 > 0$ and $\rho > 0$ such that for each $0 < \varepsilon < \varepsilon_0$ there exists $x(t)$ s.t. $\|H_0(x(T)) - H_0(x(0))\| > \rho$
Introduction

- **Example:**
 - Planar elliptic restricted three-body problem (PERTBP): the primaries move on elliptic orbits of eccentricities ε
 - Model: Sun-Jupiter system $\mu = 0.0009537$, $\varepsilon = 0.048$, initial energy h of comet Oterma
 - Hamiltonian
 \[H_\varepsilon(x, t) = H_0(x) + \varepsilon H_1(x, t), \]
 H_0 is the Hamiltonian of the PCRTBP
 - **Theorem** [Capiński, M.G., de la Llave, 2014]: There exist $\varepsilon_0 > 0$ and $\rho > 0$ such that for each $0 < \varepsilon < \varepsilon_0$ there exists $x(t)$ s.t. $\|H_0(x(T)) - H_0(x(0))\| > \rho$
Introduction

- Example:
 - Planar elliptic restricted three-body problem (PERTBP): the primaries move on elliptic orbits of eccentricities ε
 - Model: Sun-Jupiter system $\mu = 0.0009537$, $\varepsilon = 0.048$, initial energy h of comet Oterma
 - Hamiltonian $H_\varepsilon(x, t) = H_0(x) + \varepsilon H_1(x, t)$, H_0 is the Hamiltonian of the PCRTBP
 - Theorem [Capiński, M.G., de la Llave, 2014]: There exist $\varepsilon_0 > 0$ and $\rho > 0$ such that for each $0 < \varepsilon < \varepsilon_0$ there exists $x(t)$ s.t. $\|H_0(x(T)) - H_0(x(0))\| > \rho$
Introduction

- **A priori unstable case:** The unperturbed Hamiltonian possesses a differentiable family of invariant tori that have hyperbolic invariant manifolds
 \[H_\varepsilon(I, \theta, p, q, t) = \frac{l^2}{2} + \left(\frac{1}{2}p^2 + \cos(q) - 1 \right) + \varepsilon H_1(p, q, l, \theta, t) \]

- **References:** Many

![Diagram of pendulum and rotator](image)
Introduction

- **A priori stable case:** The phase space of the unperturbed Hamiltonian is foliated by Lagrangean invariant tori

\[H_\varepsilon(l, \theta) = H_0(l) + \varepsilon H_1(l, \theta) \]

- **References:**
 - (Mather, 2002, 2012)
 - (Bernard, Kaloshin and Zhang, 2011), (Kaloshin and Zhang, 2012),
 - (J.-P. Marco, 2016), (M.G., J.-P. Marco, 2016)
Objectives

▶ Provide a geometric mechanism of diffusion in the a priori stable case
Objectives

▶ Provide a geometric mechanism of diffusion in the a priori stable case
▶ Steps:

 I. Resonances determine chains of normally hyperbolic cylinders (NHIC's) (J.-P. Marco, 2016)

 II. There exist diffusing orbits along the chains, under certain conditions (M.G. and J.-P. Marco, 2016)

 III. Those conditions satisfy Mather’s cusp residual condition (J.-P. Marco, 2016)
Objectives

- Provide a geometric mechanism of diffusion in the a priori stable case

Steps:

- I. Resonances determine chains of normally hyperbolic cylinders (NHIC’s) (J.-P. Marco, 2016)
Objectives

- Provide a geometric mechanism of diffusion in the a priori stable case

Steps:
- I. Resonances determine chains of normally hyperbolic cylinders (NHIC’s) (J.-P. Marco, 2016)
- II. There exist diffusing orbits along the chains, under certain conditions (M.G. and J.-P. Marco, 2016)
Objectives

- Provide a geometric mechanism of diffusion in the a priori stable case

Steps:
- I. Resonances determine chains of normally hyperbolic cylinders (NHIC’s) (J.-P. Marco, 2016)
- II. There exist diffusing orbits along the chains, under certain conditions (M.G. and J.-P. Marco, 2016)
- III. Those conditions satisfy *Mather’s cusp residual condition* (J.-P. Marco, 2016)
Objectives

- Approach for II (joint work with J.-P. Marco):
 - Geometric – goes back to Birkhoff’s theory on connecting orbits; related approaches (Moeckel, 2002), (Le Calvez, 2007), (M.G. and C. Robinson, 2013)
 - Low dimensional – diffusing orbits are obtained for 2-dimensional dynamics
 - Constructive – diffusing orbits can be found explicitly (via an algorithm)
Objectives

- Approach for II (joint work with J.-P. Marco):
 - Geometric – goes back to Birkhoff’s theory on connecting orbits; related approaches (Moeckel, 2002), (Le Calvez, 2007), (M.G. and C. Robinson, 2013)
Objectives

- Approach for II (joint work with J.-P. Marco):
 - Geometric – goes back to Birkhoff’s theory on connecting orbits; related approaches (Moeckel, 2002), (Le Calvez, 2007), (M.G. and C. Robinson, 2013)
 - Low dimensional – diffusing orbits are obtained for 2-dimensional dynamics
Objectives

- Approach for II (joint work with J.-P. Marco):
 - Geometric – goes back to Birkhoff’s theory on connecting orbits; related approaches (Moeckel, 2002), (Le Calvez, 2007), (M.G. and C. Robinson, 2013)
 - Low dimensional – diffusing orbits are obtained for 2-dimensional dynamics
 - Constructive – diffusing orbits can be found explicitly (via an algorithm)
Set-up and main results

Theorem

- **Given:**
 - \(H_\varepsilon(I, \theta) = H_0(I) + \varepsilon H_1(I, \theta), \)
 - \(C^2 \)-Hamiltoninan, \((I, \theta) \in A^3 = \mathbb{R}^3 \times T^3\)
 - \(H_0 \) strictly convex and super-linear
Set-up and main results

Theorem

▶ Given:
 ▶ \(H_\varepsilon(l, \theta) = H_0(l) + \varepsilon H_1(l, \theta) \),
 \(C^2 \)-Hamiltoninan, \((l, \theta) \in A^3 = \mathbb{R}^3 \times T^3 \)
 ▶ \(H_0 \) strictly convex and super-linear

▶ Then:
 ▶ for every \(O_1, O_2, \ldots, O_n \) open sets in \(\mathbb{R}^3 \),
 \(h \) regular value of \(H_0 \), s.t.
 \(O_j \cap \{H = h\} \neq \emptyset \),
 there exists a set \(\mathcal{R} \) such that for each
 \(\varepsilon H_1 \in \mathcal{R} \) there exists \(\Phi_\varepsilon^x(t) \) in \(\{H_\varepsilon = h\} \)
 with \(\Phi_\varepsilon^{x_j}(x) \in O_j \times T^3 \) for some \(t_j \),
 \(j = 1, \ldots, n \)
Set-up and main results

- Description of the set \mathcal{R} — Mather’s cusp residual condition:

 There exists an open-dense set $O \subset S_1 := \{ H_1 : \|H_1\| = 1 \}$

 There exists a lower semi-continuous function $\varepsilon_0 : S_1 \to \mathbb{R}$ with $\varepsilon_0 > 0$ on O

 The set \mathcal{R} claimed in the theorem is open and dense in $\{ \varepsilon H_1 : 0 < \varepsilon < \varepsilon_0 (H_1) \}$, $H_1 \in O$

 Note:

 Certain directions $H_1 \in S_1$ are 'bad', i.e., lead to H_ε integrable

 Example:

 $H_0 = \frac{1}{2}(I_{21} + I_{22})$

 $H_1 = \cos(\theta_3) \Rightarrow H_\varepsilon = \frac{1}{2}(I_{21} + I_{22}) + \left(I_{23} + \varepsilon \cos(\theta_3) \right)$
Set-up and main results

- Description of the set \mathcal{R} — Mather’s cusp residual condition:
 - There exists an open-dense set
 \[O \subset S^1 := \{ H_1 : \|H_1\| = 1 \} \]
Set-up and main results

- Description of the set \mathcal{R} — Mather’s cusp residual condition:
 - There exists an open-dense set $\mathcal{O} \subset S^1 := \{ H_1 : \| H_1 \| = 1 \}$
 - There exists a lower semi-continuous function $\varepsilon_0 : S^1 \to \mathbb{R}$ with $\varepsilon_0 > 0$ on \mathcal{O}

- Note:
 - Certain directions $H_1 \in S^1$ are ‘bad’, i.e., lead to H_ε integrable

- Example:
 $H_0 = \frac{1}{2} \left(I_{1,1} + I_{2,2} + I_{3,3} \right)$
 $H_1 = \cos(\theta_3) \Rightarrow H_\varepsilon = \frac{1}{2} \left(I_{1,1} + I_{2,2} \right) + \left(I_{3,3} + \varepsilon \cos(\theta_3) \right)$
Set-up and main results

- Description of the set \(\mathcal{R} \) — Mather’s cusp residual condition:
 - There exists an open-dense set \(\mathcal{O} \subset S^1 := \{H_1 : \|H_1\| = 1\} \)
 - There exists a lower semi-continuous function \(\varepsilon_0 : S^1 \to \mathbb{R} \) with \(\varepsilon_0 > 0 \) on \(\mathcal{O} \)
 - The set \(\mathcal{R} \) claimed in the theorem is open and dense in \(\{\varepsilon H_1 : 0 < \varepsilon < \varepsilon_0(H_1), H_1 \in \mathcal{O}\} \)

Note:
- Certain directions \(H_1 \in S^1 \) are ‘bad’, i.e., lead to integrable
- Example:
 \[
 H_0 = \frac{1}{2}(I_2^1 + I_2^2 + I_2^3) \]
 \[
 H_1 = \cos(\theta_3) \Rightarrow \varepsilon H_1 = \frac{1}{2}(I_2^1 + I_2^2) + (I_2^3 + \varepsilon \cos(\theta_3))
 \]
Set-up and main results

- Description of the set \mathcal{R} — Mather’s cusp residual condition:
 - There exists an open-dense set $\mathcal{O} \subset S^1 := \{H_1 : \|H_1\| = 1\}$
 - There exists a lower semi-continuous function $\varepsilon_0 : S^1 \to \mathbb{R}$ with $\varepsilon_0 > 0$ on \mathcal{O}
 - The set \mathcal{R} claimed in the theorem is open and dense in $\{\varepsilon H_1 : 0 < \varepsilon < \varepsilon_0(H_1), H_1 \in \mathcal{O}\}$

- Note:
 - Certain directions $H_1 \in S^1$ are ‘bad’, i.e., lead to H_ε integrable
 - Example:

 $H_0 = \frac{1}{2}(l_1^2 + l_2^2 + l_3^2)$
 $H_1 = \cos(\theta_3) \rightsquigarrow$
 $H_\varepsilon = \frac{1}{2}(l_1^2 + l_2^2) + \left(\frac{l_3^2}{2} + \varepsilon \cos(\theta_3)\right)$
Case $\varepsilon = 0$:

- In action space \mathbb{R}^3 – resonance relations
 \[k_1\omega_1(l) + k_2\omega_2(l) + k_3\omega_3(l) = 0, \]
 with $(k_1, k_2, k_3) \in \mathbb{Z}^3 \setminus \{0\}$, where
 \[\omega(l) = \partial H_0 / \partial l \]
- Simple resonance \leadsto surface in \mathbb{R}^3;
- Double resonance \leadsto intersection of two resonant surfaces \leadsto curve in \mathbb{R}^3
- \(\{H_0 = h\} \cap \mathbb{R}^3 \leadsto \) 2-sphere – simple resonances \leadsto curves;
 double resonances \leadsto points
Geometric structures

Case $\varepsilon = 0$:

- In action space \mathbb{R}^3 – resonance relations

 \[k_1 \omega_1(I) + k_2 \omega_2(I) + k_3 \omega_3(I) = 0, \]

 with $(k_1, k_2, k_3) \in \mathbb{Z}^3 \setminus \{0\}$, where

 \[\omega(I) = \partial H_0 / \partial I \]

- Simple resonance \leadsto surface in \mathbb{R}^3;

- Double resonance \leadsto intersection of two resonant surfaces \leadsto curve in \mathbb{R}^3

\[\{H_0 = h\} \cap \mathbb{R}^3 \leadsto 2\text{-sphere} \quad \text{simple resonances} \leadsto \text{curves}; \quad \text{double resonances} \leadsto \text{points} \]
Case $\varepsilon > 0$ small

- Distinguish between ‘strong double resonances’ and ‘weak double (almost simple) resonances’
- Along (almost) simple resonances the perturbation determines NHIC’s $\approx \mathbb{T}^2 \times [a, b]$
- Assume $H_0 = \frac{1}{2}(l_1^2 + l_2^2 + l_3^2)$
- Set $H_0 = h$ and $l_3 = 0$:
 \[
 \dot{\theta}_1 = l_1 + \varepsilon \frac{dH_1}{dl_1} \\
 \dot{\theta}_2 = l_2 + \varepsilon \frac{dH_1}{dl_2} \\
 \dot{\theta}_3 \approx \varepsilon \frac{dH_1}{dl_3}
 \]
- $\Rightarrow \theta_1, \theta_2$-fast angles, θ_3-slow angle
- $V(\theta_3) = \int_{\mathbb{T}^2} H_1(\theta_1, \theta_2, \theta_3) d\theta_1 d\theta_2$
- $H_\varepsilon \approx \frac{1}{2}(l_1^2 + l_2^2) + \left(\frac{1}{2}l_3^2 + \varepsilon V(\theta_3)\right)$
Geometric structures

- In \(\{ H_\varepsilon = h \} \) – there exist chains of 3-dimensional cylinders along the simple resonances that get close to one another near double resonances.

- At ‘strong’ double resonances – singular cylinders, that can be ‘continued’ to non-singular ones.
Geometric structures

- Chains of cylinders:
 - \(C_1, C_2, \ldots, C_k \) in \(\{ H_\varepsilon = h \} \)
 - \(C_i \cong \mathbb{T}^2 \times [a_i, b_i] \), \(C^1 \)-smooth
 - \(C_i \) normally hyperbolic invariant manifold with boundary
 - \(W^u(C_i) \cap W^s(C_i) \neq \emptyset \) and \(W^u(C_i) \cap W^s(C_{i+1}) \neq \emptyset \)
 - For each \(O_j \) there exist a \(C_i \) and an ‘essential torus’ \(\mathcal{T} \) in \(C_i \) s.t. \(O_j \cap \mathcal{T} \neq \emptyset \)

- Want to prove:
 - Given \(\delta > 0 \), there exists \(\Phi^\varepsilon_t(x) \), s.t. for each \(i \) and each essential torus \(\mathcal{T} \) in \(C_i \), there is \(t_x \) s.t. \(\Phi^\varepsilon_{t_x}(x) \) in a \(\delta \)-neighborhood of \(\mathcal{T} \)
Geometric structures

- Scattering maps associated to $W^u(C_i) \cap W^s(C_i) \neq \emptyset$ and $W^u(C_i) \cap W^s(C_{i+1}) \neq \emptyset$

 - $\psi_i(x_-) = x_+$ iff $W^u(x_-) \cap W^s(C_i)$ and $W^s(x_+) \cap W^u(C_i)$ at $x \rightsquigarrow$

 - $\psi_i : \text{dom}(\psi_i) \subseteq C_i \rightarrow \text{im}(\psi_i) \subseteq C_i$

 - $\psi_i(x_-) = x_+$ iff $W^u(x_-) \cap W^s(C_{i+1})$ and $W^s(x_+) \cap W^u(C_i)$ at $x \rightsquigarrow$

 - $\psi_{i+1}^i : \text{dom}(\psi_{i+1}^i) \subseteq C_i \rightarrow \text{im}(\psi_{i+1}^i) \subseteq C_{i+1}$

- Collection of all possible scattering maps — scattering relation (which can be iterated)
For each C_i there exists $A_i \simeq \mathbb{T}^1 \times [a_i, b_i]$ global surface of section1 and $\phi_i : A_i \to A_i$ first return map s.t.:

- $\partial_\bullet A_i$, $\partial^\bullet A_i$ are ϕ_i-invariant and ϕ_i-minimal
- ϕ_i is a ‘special twist map’ on A_i

$\psi_i, \psi_{i,i+1}$ induce scattering maps on A_i’s, which are symplectic (Delshams, de la Llave, Seara, 2008)

$\psi_{i,i+1}$ maps a neighborhood of $\partial^\bullet A_i$ onto a neighborhood of $\partial_\bullet A_{i+1}$

- on each cylinder there are two dynamics – inner dynamics ϕ_i and outer dynamics ψ_i
- in addition, there is outer dynamics from one cylinder to the next

1follows from the convexity of the unperturbed system
Differences from the a priori unstable case

- The inner dynamics on C_i is not close to integrable
- The scattering maps ψ_i, ψ_i^{i+1} cannot be computed via perturbation theory
Main result

Theorem (M.G. and J.-P. Marco, 2016)

For a given annulus A_i, if ϕ_i and ψ_i are in ‘general position’ relative to A_i then there exists a pseudo-orbit of $\{\phi_i, \psi_i\}$ from a neighborhood of $\partial \bullet A_i$ to a neighborhood of $\partial \bullet A_i$, which visits a δ-neighborhood of every $\Gamma \in \text{Ess}(\phi_i)$.

- Notation: $\text{Ess}(\phi_i) =$ essential (i.e., homotopically non-trivial) invariant circles of ϕ_i on A_i
- Similar idea to (Moeckel, 2002) with one significant difference: ψ_i not defined on the whole annulus

\(^2\)in particular, if no circle in $\text{Ess}(\phi_i)$ is left invariant under ψ_i
Main result

Corollary

For the whole system of annuli \(\{A_i\}_{i=1,...,k} \) there exists a pseudo-orbit of \(\{\phi_i, \psi_i, \psi^{i+1}_i\} \) from a neighborhood of \(\partial\bullet A_1 \) to a neighborhood of \(\partial\bullet A_k \), which visits a \(\delta \)-neighborhood of every \(\Gamma \in \text{Ess}(\phi_i) \) for every \(i \)

Corollary

Pseudo-orbits of \(\{\phi_i, \psi_i, \psi^{i+1}_i\} \) can be shadowed by true orbits of \(\Phi^\varepsilon_t \) – follows from a Shadowing Lemma in (M.G., de la Llave, Seara, 2014)

- The Shadowing Lemma mentioned above uses Poincaré Recurrence Theorem
- In conclusion, there exist trajectories of \(\Phi^\varepsilon_t \) that ‘diffuse’ along the chain of cylinders \(C_1, \ldots, C_k \) and visit a \(\delta \)-neighborhood of each essential torus \(T \)
- No control on diffusion time
Sketch of the proof of the main result

What do we mean by a ‘special twist map’?

- each $\Gamma \in \text{Ess}(\phi_i)$ has irrational rotation number
- each $\Gamma \in \text{Ess}(\phi_i)$ is either the upper bound of a Birkhoff Zone of Instability (BZI) or is a limit from below, in the Hausdorff topology, of essential circles $\Gamma_n \prec \Gamma$ in $\text{Ess}(\phi_i)$
- these conditions are generic (Herman,1983)
Sketch of the proof of the main result

- What do we mean by the inner and the outer dynamics being in ‘general position’?
 - Assumptions on the outer dynamics
 - **Splitting property:** for each $\Gamma \in \text{Ess}(\phi_i)$ which is a limit from below of Γ_n’s, there exists a splitting arc $A \subset \Gamma^-$ ($= \text{the region in } A_i \text{ below } \Gamma$) with $\psi_i(A) \subseteq \Gamma$
 - **Right (left) triangle property:** for each Γ which is the upper bound of a BZI there exists a right (left) triangle $T \subseteq \Gamma^-$ with $\psi_i(T) \subseteq \Gamma^+$ ($= \text{the region in } A_i \text{ above } \Gamma$)
Sketch of the proof of the main result

- What do we mean by the inner and the outer dynamics being in ‘general position’?
 - Assumptions on the outer dynamics
 - Splitting property: for each \(\Gamma \in \operatorname{Ess}(\phi_i) \) which is a limit from below of \(\Gamma_n \)’s, there exists a splitting arc \(A \subset \Gamma^- \) (= the region in \(A_i \) below \(\Gamma \)) with \(\psi_i(A) \subseteq \Gamma \)
 - Right (left) triangle property: for each \(\Gamma \) which is the upper bound of a BZI there exists a right (left) triangle \(T \subseteq \Gamma^- \) with \(\psi_i(T) \subseteq \Gamma^+ \) (= the region in \(A_i \) above \(\Gamma \))
Sketch of the proof of the main result

- What do we mean by the inner and the outer dynamics being in ‘general position’?
 - Assumptions on the outer dynamics
 - **Splitting property**: for each \(\Gamma \in \text{Ess}(\phi_i) \) which is a limit from below of \(\Gamma_n \)'s, there exists a splitting arc \(A \subset \Gamma^- \) (\(= \) the region in \(A_i \) below \(\Gamma \)) with \(\psi_i(A) \subseteq \Gamma \)
 - **Right (left) triangle property**: for each \(\Gamma \) which is the upper bound of a BZI there exists a right (left) triangle \(T \subseteq \Gamma^- \) with \(\psi_i(T) \subseteq \Gamma^+ \) (\(= \) the region in \(A_i \) above \(\Gamma \))
Sketch of the proof of the main result

- Constructive version:
 - apply the Birkhoff procedure to ϕ until you get an essential circle Γ
 - apply the scattering map ψ to Γ and apply again the Birkhoff procedure to ϕ
 - key idea – essential circles obtained via this procedure cannot accumulate – due to the right (left) triangle property

- Lemma: If T is a right (left) triangle for Γ and $\Gamma' \prec \Gamma$ is sufficiently close to Γ, then there exists a right (left) triangle T' for Γ' such that $\psi(T') \cap \Gamma^+ \neq \emptyset$
Sketch of the proof of the main result

How to use ‘left triangles’ instead of ‘right triangles’

- In the above constructions take negative iterates ϕ^{-n}, $n > 0$ of the twist map ϕ, rather than positive ones.

- Key ingredient: positive iterates of a vertical line under ϕ — right tilted curves; negative iterates of a vertical line under ϕ^{-1} — left tilted curves.

- The orbit of N_\bullet under the polysystem $\{\phi, \psi\}$ is dense in the orbit of N_\bullet under the polysystem $\{\phi, \phi^{-1}, \psi\}$ – use Poincaré Recurrence Theorem.
Sketch of the proof of the main result

Shadowing Lemma for NHIM’s (M.G., de la Llave, Seara, 2014)

Assume that $f : M \to M$ is a smooth map, $\mathcal{C} \subseteq M$ is a NHIM, ψ is a scattering map on some open subset of \mathcal{C}, and $\phi = f|_{\mathcal{C}}$.

Then, for every $\delta > 0$ there exist $n^* \in \mathbb{N}$, and $m_i^* : \mathbb{N}^{2i+1} \to \mathbb{N}$, $i \geq 0$, s.t., for every pseudo-orbit $\{y_i\}_{i \geq 0}$ in \mathcal{C} of the form

$$y_{i+1} = \phi^{m_i} \circ \psi^\Gamma \circ \phi^{n_i}(y_i),$$

with $n_i \geq n^*$ and $m_i \geq m_i^*(n_0, \ldots, n_{i-1}, n_i, m_0, \ldots, m_{i-1})$, there exists an orbit $\{z_i\}_{i \geq 0}$ of f in M such that, for all $i \geq 0$,

$$z_{i+1} = f^{m_i+n_i}(z_i), \text{ and } d(z_i, y_i) < \delta.$$

Remark: No assumption on the ‘inner dynamics’ given by ϕ